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An intermediate neglect of  differential overlap method of use for examining 
the electronic structure of  lanthanide complexes is developed. It is character- 
ized by a basis set obtained from relativistic Dirac-Fock atomic calculations, 
the inclusion of all one-center two-electron integrals, and a parameter  set 
based on molecular geometry. 

Lanthanide halides MX2, MX3 and M X  4 a r e  studied here, as well as initial 
results for the twelve coordinate Ce(NO3)62 ion. Geometries obtained are in 
excellent agreement with experimental values when available. Many MX3 
complexes are found to be pyramidal,  and EuC12 and YbC12 are calculated 
to be bent even at the SCF level. Models invoking London type forces are 
therefore n o t  required. Ionization potentials are calculated for the trihalides 
(ASCF) and are in reasonable agreement with experiment. 

Contrary to conclusion of  others, f-orbital  participation, although small, is 
required - at least in this model - to obtain the spread of metal to halide bond 
distance observed in these complexes. However  f-orbital  participation does 
not seem to be significant even in the twelve coordinate Ce(NO3)62 complex: 
rather the large coordination number  seems to be a consequence of the 
relatively large size of  the lanthanide ion. 
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I. Introduction 

The past decade has seen a dramatic increase in interest and activity in lanthanide 
and actinide chemistry. Not only has considerable knowledge been gained in the 
traditional area of inorganic f-element chemistry, but much modern work is 
concerned with organo-f-element reactions [1], and the use of  lanthanides and 
actinides as very specific catalysts [2, 3]. Unlike the corresponding chemistry 
involving the d metals, very little explanation is offered for much of this chemistry. 

The electronic structure of these systems is difficult to calculate from quantum 
chemical means for several reasons. Most of the complexes of real experimental 
interest are large. In addition, very little about f-orbitals as valence orbitals is 
known, although experience is now being gained on the use of f-orbitals as 
polarization orbitals. Finally, the f-orbital elements are sufficiently heavy that 
relativistic effects become important. Very few ab initio molecular orbital studies 
have been reported on f-orbital systems [4]. Extended H/ickel calculation, 
however, have been successful in explaining some of this chemistry [5]. Scattered 
wave and D V M X a  studies of f-orbital systems have also proven effective, 
especially in examining the photoelectron spectroscopy of reasonably complex 
systems [6-8]. 

In this paper, we examine an Intermediate Neglect of Differential Overlaps 
(INDO) technique for use in examining f-orbital complexes. At the Self- 
Consistent Field (SCF) level this technique executes as rapidly on a computer 
as does the Extended H/ickel method, and considerably more rapid than the 
scattered wave Xa  method. Since the electrostatics of the INDO method are 
realistically represented, molecular geometries can be obtained using gradient 
methods [9] as we shall demonstrate below. Since the INDO method we examine 
contains all one-center two-electron terms it is also capable of yielding the energies 
of various spin states in these systems. With configuration interaction (CI) this 
model should also be useful in examining the UV-visible spectra of f-orbital 
complexes. Preliminary studies off-orbital  chemistry using an INDO model have 
been disclosed by Clack and Warren [10] and, more recently, by Li Le-Min et 
al. [11]. The method we examine will differ from their methodology in several 
areas, as discussed below. 

Several problems unique to a INDO tratment of these systems must be considered, 
and we have very little ab initio work to guide us. As mentioned, what role do 
relativistic effects play? Although we might hope to parameterize scalar contribu- 
tions through the choice of orbitals and pseudo-potential parameters, spin orbit 
coupling, often larger than crystal field effects, will need to be considered at some 
later stage. Since f-orbitals are generally tight, and ligand field splittings thus 
small, a great many states differing only in their f-orbital populations lie very 
close in energy. These near degeneracies often prevent "automatic" SCF conver- 
gence, a problem with which we must deal for an effective model, The nature of 
the valence basis set itself is in question. Are the filled 5p and the vacant 6p of 
the lanthanides both required for a proper description of their compounds? 
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2. The model 

The INDO model Hamiltonian that we use was first disclosed by Pople and 
collaborators [12], and then adjusted for the spectroscopy [13] and extended to 
the transition metal series [14-16]. The details of this model are published 
elsewhere [ 14-16]. To extend this model H amiltonian to the f-orbital systems we 
need first a basis set that characterizes the valence atomic orbitals, and that is 
subsequently used for calculating the overlap and the one- and two-center 
two-electron integrals. 

Subsequent atomic parameters that enter the model are the valence state ionization 
potentials used for calculating one-center one-electron "core"  integrals and the 
Slater-Condon F k and G k integrals that are used for the formation of one-center 
two-electron integrals. The evaluation of these integrals using experimental infor- 
mation has traditionally made this model highly successful in predicting optical 
properties [17, 18]. 

We employ in this model one set of  pure parameters, the resonance or B(k) 
parameters; for each lanthanide atom we decided to use B(s) = B(p), B(d) and 
B(f). These parameters will be chosen to give satisfactory geometries of model 
systems. Another choice is one that gives good predictions of  UV-visible spectros- 
copy [13, 15]. These values seldom "differ much from those chosen to reproduce 
molecular geometry. 

In this initial work: all two-center two-electron integrals required for the INDO 
model Hamiltonian are calculated over the chosen basis set, as are the one-center 
two-electron F ~ integrals. An alternate choice would be one that focuses on 
molecular spectroscopy. In such a case, and one that we have to investigate 
subsequently, the one-center two-electron F ~ could be chosen from the Pariser 
approximation [19] F~ = I P ( n ) -  EA(n), ( IP=  Ionization Potential, EA =  
Electron Affinity) and the two-electron two-center integral from one of the more 
successful functions established for this purpose [20-22]. 

At the SCF level, we seek solutions to the pseudo-eigenvalue problem 

FC=Ce (1) 

with F, the Fock or energy matrix, C, the matrix compound of Molecular Orbital 
(MO) coefficients, and e, a diagonal matrix of MO eigenvalues. The above 
equation is for the closed shell case (all electrons paired). The unrestricted Hartree 
Fock case is discussed in detail elsewhere [14], as is the open shell restricted 
case [23-25]. Although nearly all f-orbital systems are open shell, consideration 
of the closed shell case demonstrates the required theory and is considerably 
simpler. 

Within the INDO model, elements of  F are given by: 
A A  A A  

+ ~ P,,~(/2/21#~)- Z Z B ( ~  I SBS B) (2a) 
o ' ~ B  B ~ A  
C A  
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(2b) 

(2c) 

A 
AA 

o-,A 

F~B=�89 B B ( v ) ) S ~  ' - -  -- ~P~. (l~/Z I ~f') A # B 

where 

(/xv IotA) = I d r ( l )  d~'(2)X*(1)X~(1)rl~X~(2)Xx(2). (3) 

P is the first order density matrix, and since one assumes that the Atomic Orbital 
(AO) basis {Xz} is orthonormal it is identical to the charge and bond order matrix, 
given by 

MO 
Pg~ = Y. C~.aCvana, (4) 

a 

with na the occupation of  MO @,, n~ = 0, 1, 2. In Eqs. (2), F ~  refers to a matrix 
element A B (x .]F[x~} with AO X A centered on atom "A". The core integral 

u/xAA (/IRA ]V2  ZA ..]_ QA 

is essentially an atomic term and will be estimated from spectroscopic data a s  
described below. I ~A is an effective potential that keeps the valence orbital X A 
orthogonal and non-interacting from the neglected inner-shell orbitals. The choice 
of an empirical procedure of  u.A~ A will remove the necessity for explicit consider- 
ation of this term. The bar over an orbital in an integral, such as (/2a/2 a ] indicates 
that the orbital X. is to be replaced with an s symmetry orbital of the same 
quantum number and exponent�9 The appearance of such orbitals in the theory 
is required for rotational symmetry and compensates for not including other two 
center integrals of the NDDO type [26], i.e. (j A/jA[, X/x 7& Xv" The last term in 

�9 �9 �9 A* A Eq. (2a) represents the attraction between an electron in &stnbutlon X~ X,  and 
all nuclei but A. The rationale for replacing integral 

(/xAIR~II/zA) ~ (/~A/2A] sBs B) (6) 

is given elsewhere, and compensates for neglected two center inner shell-valence 
shell repulsion [27, 28] and neglected valence orbital (symmetrical) orthogonaliz- 
ation [28, 29]. ZB is the core charge of atom B and is equal to the number of 
electrons of  neutral atom B that are explicitly considered; i.e. 4 for carbon, 8 for 
iron, 4 for cerium, etc. 

S of Eq. (2c) is related to the overlap matrix A, [13-15] and is given by 

/=0 

where g.(a~(a~ is the Eulerian transformation factor required to rotate from the 
local diatomic system to the molecular system, (tz(1)l v(1)) are the sigma (I = 0), 
pi (l = 1), delta (l = 2) or phi (l = 3) components to the overlap in the local system, 
and f~,(~)~(a~ are empirical weighting factors chosen to best reproduce the 
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molecular orbital energy spread for model ab initio calculations. We have made 
little use of this f factor, and set all f = 1 except between p symmetry orbitals 
viz [13-15, 20]. 

Spp = 1.267gp~p,~(po" Ipo') + 0.585gp~p~(pTr Ipcr) (8) 

A. The basis set 

In general ZDO methods choose a basis set of Slater Type Orbitals (STO) 

[(2~') 2,+,] 1/2 
R,lm = [ ~ j r "-1 e-CrY'~(O, 4~), (9a) 

where YI(O, &) are the real, normalized spherical harmonics. Atomic orbitals 
X~, are expressed as fixed contractions of these {Rn~m} 

Xt, = Z a,lmRnlm �9 (9b) 

In general a single R.1 m function describes the s and p orbitals for most atoms. 
The d orbitals of the transition metals, however, require at least a double-ff type 
function (two terms in 9b) for an accurate description of both their inner and 
outer regions. For the lanthanides we have examined basis sets suggested by Li 
Le-Min et al. [10, 11], by Bender and Davidson [30], and by McLean and McLean 
[31]. In the latter case, the two major contributors of Eq. (9b) in the valence 
orbitals of the double-ff atomic calculations were selected, and these functions 
were renormalized with fixed ratio to yield the required nodeless double-ff func- 
tions for INDO. We were unable with any of these choices to develop a systematic 
model useful for predicting molecular geometries (see later discussion of reson- 
ance integrals). 

We have adapted the following procedure on selecting an effective basis set [32]. 
The lanthanides and their mono-positive ions were calculated using the numerical 
Dirac-Fock relativistic atomic program of Desclaux [33]. From these wavefunc- 
tions radial expectation values (r), (r 2) and (r 3) are calculated for 6s, 6p, 5d and 
4f  functions. The 6s, 5d and 4f  wavefunctions were obtained by Dirac-Fock 
calculations on the promoted, 4f  m-35 d 16S2 configuration; the 6p from calculations 
in which a 5d electron was promoted, 4f"-36s26p 1. Wavefunctions for the 
mono-positive ions are obtained from 4f"-35d~6s ~ and 4fm-36s~6p~ respectively. 
A generalized Newton procedure was then used to determine exponents (~') and 
coefficients anita for a given set of (r), (r 2) and (r 3) with functions of the form of 
Eq. (9b). Again, as in the transition metal atoms, we found that a single ~ function 
fits the ns and np atomic functions well in the regions where bonding is important, 
but the (n - 1)d, and now the (n - 2 ) f  require at least two terms in the expansion 
of Eq. (9b). This is demonstrated for the Ce + ion in Fig. 1, where it is shown that 
a single-~ expansion is poor for the outer region of the 4f  function.. 

In Fig. 2 the value: of (r) is plotted versus atomic number, the contraction of the 
6s and 6p orbitals due to relativistic effects (DF vs. HF) is quite apparent here, 
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Single vs. double zeta 4f-STO orbital amplitude 
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Fig. 1. Radial wavefunction for the 4 f  orbital of  Ce + with single-~" and double-~" Slater type orbitals 
(STOs). - - - ,  double zeta; - - ,  single zeta 
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| 

and is a consequence of  the greater core penetration of these orbitals. Subsequent 
expansion of  the 4 f  and 5d, now with increased shielding, results. After some 
experimentation we use the Dirac-Fock values obtained from the mono-positive 
ions. The basis set adopted is given in Table 1. 

The 4 f  and 5 d functions are quite compact. At typical bonding distance (4f4f]/z/z) 
and (5d5d ]/xtz) are essentially RA~. Because of this we calculate all two-center 

DF vs. HF average values of  r for the 4f,5d,6s and  6p orbitals 

6 i i i i i i 

3 

70 72 
Atomic number 

Fig. 2. Average value of  r for the valence orbitals of  the lanthanides from a relativistic calculation 
(DF) and a non-relativistic calculation (HF). *: D F - 6 p ;  A: H F - 6 p ;  G: D F - 6 s ;  D: H F - 6 s ;  • 
D F - 5 d ;  0 :  H F - 5 d ;  +: D F - 4 f ;  &: H F - 4 f  



T
ab

le
 1

. 
S

la
te

r 
ty

pe
 o

rb
it

al
 (

S
T

O
) 

b
as

is
 f

u
n

ct
io

n
s 

fo
r 

th
e 

la
n

th
an

id
e 

at
o

m
s.

 T
he

 s
in

gl
e 

~"
 f

u
n

ct
io

n
s 

ar
e 

li
st

ed
 f

o
r 

th
e 

4f
, 

5d
, 

6s
 a

n
d

 6
p 

or
bi

ta
ls

 a
lo

n
g

 w
it

h
 t

h
e 

d
o

u
b

le
 ~

 f
u

n
ct

io
n

s 
fo

r 
th

e 
4

f 
an

d
 5

d
 o

rb
it

al
s 

,.q
 

7,
" 0= E
 

S
in

gl
e 

~ 
D

o
u

b
le

 
ex

p
o

n
en

ts
 

E
x

p
o

n
en

ts
 

C
oe

ff
ic

ie
nt

s 
A

to
m

 
4

f 
5d

 
6s

 
6p

 
4

f 
5d

 
4

f 
5d

 

8 

C
e 

4.
43

9 
2.

06
1 

1.
54

8 
1.

36
1 

6.
11

8 
2.

52
2 

3.
07

7 
1.

58
1 

0.
71

59
 

0.
45

75
 

0.
50

03
 

0.
63

34
 

P
r 

4.
65

7 
2.

10
2 

1.
57

1 
1.

38
0 

6.
39

3 
2.

64
6 

3.
12

6 
1.

59
8 

0.
71

75
 

0.
45

42
 

0.
51

04
 

0.
62

57
 

N
d

 
4.

68
1 

2.
13

8 
1.

59
3 

1.
39

8 
6.

64
8 

2.
75

7 
3.

16
9 

1.
61

2 
0.

71
96

 
0.

45
10

 
0.

52
02

 
0.

61
82

 
P

m
 

5.
05

3 
2.

17
1 

1.
61

4 
1:

41
5 

6.
88

9 
2.

85
8 

3.
20

8 
1.

62
3 

0.
72

20
 

0.
44

79
 

0.
52

95
 

0.
61

12
 

S
m

 
5.

23
6 

2.
20

1 
1.

63
5 

1.
43

2 
7.

12
0 

2.
95

1 
3.

24
4 

1.
63

3 
0.

72
47

 
0.

44
50

 
0.

52
38

 
0.

60
46

 
E

u
 

5.
41

4 
2.

22
9 

1.
65

6 
1.

44
8 

7.
34

2 
3.

03
8 

3.
27

8 
1.

64
0 

0.
72

75
 

0.
44

21
 

0.
54

66
 

0.
59

86
 

G
d

 
5.

56
5 

2.
24

3 
1.

67
8 

1.
46

3 
7.

52
3 

3.
09

1 
3.

28
8 

1.
63

4 
0.

73
32

 
0.

43
75

 
0.

55
62

 
0.

59
16

 
T

b
 

5.
71

7 
2.

25
4 

1.
70

0 
1.

47
8 

7.
70

7 
3.

14
8 

3.
29

8 
1.

62
8 

0.
73

79
 

0.
43

37
 

0.
56

48
 

0.
58

57
 

D
y

 
5.

86
9 

2.
26

2 
1.

72
3 

1.
49

2 
7.

89
2 

3.
20

6 
3.

30
7 

1.
62

1 
0.

74
21

 
0.

43
04

 
0.

57
24

 
0.

58
08

 
H

o
 

6.
01

9 
2.

26
9 

1.
74

5 
1.

50
7 

8.
07

6 
3.

26
4 

3.
31

6 
1.

61
3 

0.
74

61
 

0.
42

73
 

0.
57

91
 

0.
57

68
 

E
r 

6.
16

8 
2.

27
4 

1.
76

7 
1.

52
1 

8.
25

8 
3.

32
0 

3.
32

4 
1.

60
5 

0.
74

98
 

0.
42

43
 

0.
58

52
 

0.
57

35
 

T
m

 
6.

31
6 

2.
27

7 
1.

78
9 

1.
53

5 
8.

43
8 

3.
37

5 
3.

33
2 

1.
59

6 
0.

75
34

 
0.

42
14

 
0.

59
05

 
0.

57
09

 
Y

b
 

6.
46

2 
2.

27
9 

1.
81

2 
1.

54
9 

8.
61

6 
3.

42
8 

3.
33

8 
1.

58
7 

0.
75

70
 

0.
41

86
 

0.
59

52
 

0.
56

90
 

L
u

 
6.

60
7 

2.
27

8 
1.

83
4 

1.
56

2 
8.

79
1 

3.
48

0 
3.

34
3 

1.
57

7 
0.

76
05

 
0.

41
59

 
0.

59
94

 
0.

56
76

 



28 J.c. Culberson et al. 

two-electron integrals with ~'~ values in Table 1. This value is chosen to match 
the accurate F ~ Slater-Condon Factors obtained from the numerical atomic 
calculations by a single exponent, via 

F~ = 0.200905 ~ (4f) 

F~ = 0.164761 ~" (5d) 

F~ = 0.139803 ~" (6s) 

F~ = 0.139803 ~" (6p). 

(lOa) 

(lOb) 

(10c) 

(lOd) 

The error in calculating two-centered two-electron integrals at typical bonding 
distances with this single-~" approximation is well under 1%, and this procedure 
is much simpler. 

B. Core integrals 

The average energy of a configuration of an atom or ion is given by [34, 35] 

E(skpmd"f  q) = kU~s + rnUpv + nUdd + qUfy-~ k (k  - 1) Wss 
2 

+ m ( m -  1 ) 2  Wpp+ ~ n ( n  - 1) Wdd-~ q(q--l______~)2 WrI+kmWw 

+ knWsd + kqWsf+ mnWpd + mqWpf+ nqWdf, (11) 

with W~j, the average two electron energy of a pair of electrons in orbitals X~ and 
X~ given by 

W~ = F~ 

Wep = F ~  2/25 FE(pp) 

Wdd = F~ dd ) - 2/ 63 F2( dd ) - 2/63F4(rid) 

Wff = F~  - 4/195F2(f f )  - 2/143F4(f f )  - l O0/ 5577 F6(f f )  

Wsp = F~ - 1/6GI(sP) (12) 

W~d = F~ - 1/lOG2(sd) 

W~f = F~ sf) - 1/14G3(sf) 

Wpd = F ~  1 / 1 5 O l ( p d ) -  3/70G3(P d) 

Wpf = F ~  

Wdy = F~ df) - 3/70G~( df) - 2/105G3( df) - 5/231GS( df) �9 

The core integrals Ui~, Eq. 5, are then evaluated by removing an electron from 
orbital Xi, and equating the difference in configuration energy between cation 
and neutral to the appropriate observed IP(n). We prefer this procedure rather 
than that suggested by others that average the value obtained from IP(n) and 
EA(n) [29, 34, 36]. 
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There are a great many low lying configurations of the lanthanide atoms and 
their ions. The lowest terms of Ce, Gd and Lu come from fn-3ds2, while the 
remaining lanthanide atoms have the structure fn-2s2. Two processes are then 
possible for 6s electron ionization: 

I f~-3dls2~fn-3dlsl+(s) 

II f"-2s2~f"-2sl+(s). 
The ionization energy of a 6s electron from I is systematically 0.4-0.5 eV larger 
than that obtained from II. When combined with Eq. (11), the estimate for Us, 
differ by less than 0.1 eV. That is, choosing the values of process I, the use of 
Eq. (11) predicts the values of process II within 0.1 eV. We thus choose the Values 
of process I shown in Table 2. These values are obtained from the promotion 
energies of  Brewer i37, 38] and then smoothed by a quadratic fit throughout the 
series. For completeness, we also give the values of process II. 

The lowest configuration containing a 5d electron is f"-3dls: throughout the 
series, and 5d ionizations are obtained from 

III fn-3dls2~fn-3sZ+(d). 

The ionization potentials for the 6p can be obtained from two processes: 

IV f"-2slpl~F"-2Sl+(p) 
V f"-3s2p~f"-3s2+(p). 

Ionization from process IV is nearly constant at 3.9 eV: from V at 4.6 eV. The 
f"-2s2 configuration is lower for all the lanthanides except Ce(fdsp), and Gd 

Table 2. Smoothed ionization potentials for processes I-VII and configuration mixing coefficients 
derived from Brewer's tables. The entries in the column labeled 1 are the mixing coefficients for the 
configuration fn-3ds2, in column 2 the fn-2s2 configuration mixing coefficients are listed 

Smoothed ionization potentials 
process Mixing 

s p d f coefficients 
Atom I II IV V III VI VII 1 2 

Ce 5.93 5.36 3.69 4.60 6,74 12.17 7.24 0.7558 0.2442 

Pr 5.89 5.42 3.76 4.62 6,77 12.79 7.27 0.2764 0.7236 

Nd 5.93 5.48 3.82 4.67 6.77 13.35 7.29 0.1772 0.8228 

Pm 5.98 5.55 3.87 4.65 6.74 13.85 7.31 0.1465 0.8535 

Sm 6.04 5.63 3,91 4.70 6.73 14.27 7.35 0,0557 0.9423 
Eu 6.10 5.69 3.95 4.74 6.68 14.62 7.39 0.0236 0.9764 

Gd 6.17 5.77 3,99 4.76 6.61 14.90 7.44 0.9037 0.0936 

Tb 6.25 5.85 4,03 4.80 6.54 15.13 7.49 0.4821 0.5179 

Dy 6.34 5.93 4.05 4.84 6.42 15.27 7.55 0,1564 0.8436 
Ho 6.42 6.01 4.08 4.89 6.30 15.35 7.61 0.1533 0.8467 

Er 6.52 6.09 4,10 4,92 6.16 15.36 7.69 0.1661 0.8339 

Tm 6.62 6,17 4,12 4.97 6.10 15.30 7.76 0.0731 0.9269 

Yb 6.73 6.26 4.13 5.02 5.96 15,18 7.84 0.0273 0.9727 
Lu 6.77 - -  - -  - -  5.31 16.11 - -  1.000 - -  
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and Wb(fn-3s2p). Using the ionization potentials of  process IV, and Eq. (11), we 
predict the values of  process V to within 0.2 eV. We do not consider this error 
significant, and thus use the smoothed values from IV given in Table 2. The 
values from process V are also given in the table for comparison. 

For a f orbital ionization, we consider the two processes 

VI f"-3ds2-+f"-4dse+(f)  

VII fn-2S2"+fn-3s2+(f) 

(compare with I and II).  As seen in Table 2 the values from the two processes 
are very different. From Eq. (11) 

Uyy(VI) = IP(VI) - (m - 4) Wff - 2 Wff - Way (13 a) 

eff(vII)  = IP(VII)  - (m - 3) Wff - 2 Ws,. (13b) 

Unlike the analogous situation for the 6s and 6p orbitals, use of  Eq. (13a) to 
find Uyy, and use of this value in Eq. (13b) to predict IP(VII)  is not successful, 
and would require the scaling of the large F~ integral often performed in 
methods parameterized on molecular spectroscopy [13, 15, 19]. 

As with the transition metal nd orbitals we might envision the following procedure. 
We assume that the lanthanide atom in a molecule is a weakly perturbed atom. 
The lowest energy configuration of the atom should then be most important in 
determining Uyf. We create a two-by-two interaction matrix 

E (f"-2s2) - A ] \ C=] = 0, (14a) 

where V is an empirical mixing parameter, and C~ and C22 determines the relative 
amounts of  each of the two configurations that are important. The exact value 
of V would depend on a given molecular situation. C12 is then given by 

2 

2 X (14b) 
C 1 - 1 + X 2  

E(f"-3ds  2 ) - E( f" -2s  2) 
X = C1/C2 - 2 V 

+ 4 ( E ( f n - 3 d S ~ v E ( f n - 2 s 2 ) ) 2 + l .  (14c) 

The values of  C 2 appear  in Table 2, where we have used the values of  E(fm-3ds 2) 
and E(fm-2s  2) obtained for the promotion energies of  Brewer [37, 38], and a 
fixed value of g = 0.02 au. Then Uyy could be obtained from 

Uff = C21 UTf(VI) + C 2 Uyf(VII). (15) 

In the case of  the 3d orbitals this valence bond mixing between 3dn-2s 2 and 
3d"-ls was important in obtaining reasonable geometric predictions [15], an 
observation now confirmed in careful ab initio studies [39]. For the lanthanide 
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integrals and their labels in the MOLECULE [43] format only the additional 
integrals need be included. These integrals are generated in explicit form via a 
computer program that we have used in the past [15] and they have also been 
recently published by Jug [41]. To our knowledge all these integrals do not appear 
in the literature for s, p, d andfbas i s ,  although we have checked those of (/x/z [ vv) 
and (/zu] u/z) against the formulas of Fanning and Fitzpatrick [35]. 

Integrals of the form (tz~[vv) and (/xu] v/x) can be obtained through atomic 
spectroscopy, and their components, F k and G k, evaluated via least square fits 

(tzlz l vv) = y~ akF k 
k 

(Ix~' l Vl~ ) = 2  bk Gk" 
k 

These F k and G k can then be used to evaluate all integrals of the " F "  or " G "  
type, even those that do not appear in atomic spectra because of high symmetry 
(i.e. (dx2_y2dyz I dxzd~y)). Integrals of the " R "  type, however, cannot be evaluated 
in this manner; viz. ( sd l dd ), ( sp ] pd ), ( sd I PP ), ( sd I f f  ), ( s f  l d f  ), ( pp I Pf  ), ( dd I Pf  ), 
( pd ld f ) ,  (sd IPf), (M Is f ) ,  (sp [ dr), and (pfJff).  For this reason we evaluate all 
one-center two-electron integrals of the lanthanides using the basis set of Table 
1, which yields the. exact F ~ value obtained from the Fock-Dirac numerical 
calculations. All F k, G k and R k integral for k >  0 are then scaled by 2/3. This 
value of the scaling is obtained from a comparison of the calculated and empiri- 
cally obtained [10, 44-46] F2(f f ) ,  F4(ff) and F6(ff)  values that implies 0.66• 
0.04. Empirically obtained values of Gk(fd) and Fk(fd) a r e  far more uncertain 
and are much smaller, and are thus not used to obtain this scaling value between 
calculated and expe, rimental values. At this point is seems appropriate to point 
out the differences of the present INDO model to that suggested by Li Le-Min 
et al [ 11]. In the latter formalism only the conventional one-center two-electron 
integrals are included leading to rotational variance. In addition, the Wolfsberg- 
Helmholz approach is used for the resonance integral B, B~ = (IP(i) + IP(j))So/2.  
No geometry optimization has been reported within their model [11]. Further 
differences are the restriction to single-~ STOs and the smoothing of the valence 
orbital ionization potentials for the lanthanides via Anno-type expressions [11]. 

3. Procedures 

The input to the INDO program consists of molecular coordinates and atomic 
numbers. Molecular geometries are obtained automatically via a gradient driven 
quasi-Newton update procedure [9], using either the restricted or unrestricted 
Hartree-Fock formalism. All UHF calculations are followed by simple annihila- 
tion [14]. 

Self-consistent field convergence is a problem with many of these systems. For 
this reason electrons are assigned to molecular orbitals that are principally f in 
nature according to the number off-electrons in the system, and the symmetry 
of the system. Orbitals with large lanthanide 5 d character are sought and assigned 
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no electrons. A procedure is then adopted that extrapolates a new density for a 
given Fock matrix based on a Mulliken population analysis of each SCF cycle [47]. 

Often this procedure is not successful. In such cases all f orbitals are considered 
degenerate, and they are equally occupied in the highest spin configuration using 
the RHF open shell method [23]. These vectors (orbitals) are then stored, and 
the SCF repeated with the specific f orbital assignments as described above. 

In cases of slow convergence, a singles or small singles and doubles, CI is 
performed to check the stability of the SCF, and the appropriateness of the forced 
electron assignment to obtian the desired state [48]. 

4. Results 

The geometries of CeC13 and LuC13 were used to determine an optimal Set of 
resonance integrals and configurational mixing coefficients. No further fitting was 
performed, and thus the structures of all other compounds are "predictions". 
The resonance parameters for the other lanthanides were determined by interpola- 
tion from the values for Ce and Lu (see Table 4). The INDO optimized geometries 
as well as the remaining cerium and lutetium trihalides are listed in Table V. In 
addition to the trihalides reported, the geometry of CeF4 is also listed in Table 
5. One can see the agreement with experiment is good in all cases. 

The potential energy of the trihalides as a function of the out of plane angle is 
very fiat. Although we have optimized all structures until the gradients are below 
10 -4  au/bohr,  the angles are converged only to +3 ~ We note, however, that all 
are predicted non-planar, in agreement with experiments [6b, 49, 50]. 

The experimental range of the bond lengths from LnF3 to LnI3 is greater than 
we calculate. Our predicted values for the trifluorides and trichlorides are in good 
agreement, while bond lengths for the tribromides and triiodides are too short. 
Since these are the more polarizable atoms it is possible that configuration 

Table 5. Geometry and ionization potentials for Cerium and Lutetium trihalides. Cerium 

tetrafluoride is also included in this table. The bond distances are given in angstroms, 

angles in degrees and IPs and eV. Experimental  a results are also shown where available 

Bond distance Bond angle Ionization potential 

Molecule INDO Exp, INDO Exp. INDO Exp. 

CeF 3 2.204 2.180 106.8 - -  8.4 8.0 
CeCI 3 2.570 2.569 115.6 111.6 10.0 9.8 
CeBr 3 2.668 2.722 115.8 115.0 9.6 9.5 
CeI 3 2.844 2.927 119.8 - -  9.9 - -  

CeF 4 2.099 2.040 109.5 109.5 - -  - -  
LuF3 2.045 2.020 107.4 - -  b 19.0 

LuC13 2.415 2.417 108.2 111.5 18.6 (17.4-18.7) 

LuBr3 2.528 2.561 108,6 114.0 17.8 (16.8 - 18.4) 

LuI 3 2.726 2.771 115,6 114.5 17.7 (16.2-18.1) 

a [6b, 49] and [50]. Estimated values for CeF3, CeI3, and LuF 3 from [55] 
b The SCF calculation on the ion of LuF 3 would not converge therefore no IP is reported 
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complexes o f  this study the 4 f  orbitals are quite compact ,  and this valence bond  
mixing does not  greatly affect geometries. However,  the calculation of  ionization 
potentials that  result in states with reduced f-orbi tals  occupat ion  is influenced. 

There are many  refinements one can make in the format ion of  a "mixing"  matrix 
such as Eq. (14a). One might  be to make V dependent  on the calculated popula t ion  
o f  the 4 f  and 5d a tomic orbitals. However,  the values o f  the p romot ion  energies 
we obtain f rom Brewer are so different than those that we obtain f rom our  own 
numerical  calculatiLons on the average energy of  a configuration, Table 3, that  
for the momen t  we choose  a 7 6 % : 2 4 %  mix of  E ( f  m 3ds2):E(fm-2s2) for all 
the atoms of  the series. This mix gives reasonable geometries and ionization 
potentials for all molecules o f  this study. Further  refinements will require more 
accurate a tomic p romot ion  energies and numerical  experience with the model.  

C. The resonance parameters, B( k ) 

Each lanthanide a tom has three B,(k)  values, B(s) = B(p) ,  B(d) and B(f) ,  and 
those we choose are summarized in Table 4. They are obtained by fitting the 
geometries o f  the trihalides, and the more covalent valent bis-cyclopentadienyls 
to be reported elsewhere. 

Bond lengths are most  sensitive to B(d) and bond  angles to B(p). These angles 
can be reproduced  solely on a basis set including 6p orbitals, and we have been 
able to obtain satisfactory comparisons  with experiment  without  the necessity o f  
including the 5p orbitals. On the other hand,  orbitals o f  p symmetry do seem to 
be required for accurate predictions o f  geometry [10, 11]. 

Table 3. Average configuration energy from Dirac-Fock, 
calculations a on the fn-3ds2 and the f"-2s2 configurations 
for all the lanthanide atoms 

Average configuration energy 
Atom fn-3dls2 fn-Zs2 

Ce - 8 8 5 3 . 7 1 4 9 4 5 6 9  -8853.64980000 
Pr - 9 2 3 0 . 4 1 6 9 0 9 7 0  -9230.37981848 
Nd -9616 .94751056  -9616.93446923 
Pm -10013 .4526061  -10013.4606378 
Sm -10420 .0710475  -10420.0976615 
Eu - 1 0 8 3 6 . 9 5 3 3 1 1 2  -10836.8834715 
Gd -11264 .0945266  -11264.0439334 
Tb - 1 1 7 0 1 . 7 8 7 7 4 9 6  -11701.7482691 
Dy -12150 .1565528  -12150.1286785 
Ho -12609 .3663468  -12609.3484161 
Er - 1 3 0 7 9 . 5 6 8 6 3 9 4  -13079.5585245 
Tm -13560 .9236801  -13560.9201649 
Yb - 1 4 0 5 3 . 5 7 7 0 3 5 4  -14053.5786047 
Lu -14557.7153258 - -  

~[33] 
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Table 4. Resonance integrals (beta values) for the Lanthanide atoms 
in eV. The beta for the s-orbital is set equal to the beta for the p-orbital 

Atom B(s) B(p) B(d) B(f) 

Ce -8.00 -8.00 -17.50 -80.00 
Pr -7.61 -7.61 -17.58 -80.00 
Nd -7.23 -7.23 -17.65 -80.00 
Pm -6.85 -6.58 -17.73 -80.00 
Sm -6.46 -6.46 -17.81 -80.00 
Eu -6.08 -6.08 -17.88 -80.00 
Gd -5.69 -5.69 -17.96 -80.00 
Tb -5.31 -5.31 -18.04 -80.00 
Dy -4.92 -4.92 -18.11 -80.00 
Ho -4.54 -4.54 -18.19 -80.00 
Er -4.15 -4.15 -18.27 -80.00 
Tm -3.77 -3.77 -18.35 -80.00 
Yb -3.38 -3.38 -18.42 -80.00 
Lu -3.00 -3.00 -18.50 -80.00 

J. c. Culberson et al. 

It has been argued that the 4 f  orbitals are not used in the chemical bonding of 
those complexes except in the more covalent cases [7, 8]. From the present study 
we are lead to the conclusion that some, albeit small, contribution is required of 
these obitals to obtain the excellent agreement between experimental and calcu- 
lated bond lengths for the series MF3, MC13, MBr3 and MI3 and for the compara- 
tive values obtained for CeF3 and CeF4. This is indicated in Table 4 by the large 
values of IB(f)l. The latter values are a consequence of the fact that the f-orbitals 
are more compact than one usually expects for orbitals important in chemical 
bonding. Use of 5d orbitals alone will predict the trends in these two series, but 
underestimates the range of values experimentally observed. 

D. Two electron integrals 

Several different interpretations have been given to the INDO scheme. The 
simplest of those schemes is to include only one-centered integrals of  the coulomb 
or exchange type 

(/x/x I vv) or (/xv I v/x). 

For an s,p basis these are complete. For an s,p, d or s,p, d , f  basis they are not, 
and the omission of the remaining integrals will lead to rotational variance. To 
restore rotational invariance, integrals of this type might be rotationally averaged 
[40], but from a study of spectra it appears that all one-center integrals should 
be evaluated [15]. For example, in the metallocenes the integral (dxz_y2dxy[dxydyz) 
is required to separate the two transitions that arise from the e lg (d )~  e2g(d) 
transitions that lead to the 1Elg and 1E2g excited states. In addition, it appears 
that the inclusion of all one-center integrals improves the predictions of angles 
about atoms with s, p, d basis sets [41, 42] and considerably improves the 
predictions of angles about the lanthanides. For these reasons we include all the 
one-center two-electron integrals. Since the INDO programs we use process 
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interaction will have its largest affect on these systems. The calculated change in 
bond length of 0.11 A in going from CeF3 to CeF4 is also smaller than the 0.14 
observed. 

Ionization potentials (IPs) are also reported in Table 5. In all cases the INDO 
values fall within the experimental ranges. These values are calculated using the 
ASCF method, and only the first IP is calculated. Experimentally [6b, 51] these 
valued are somewhat uncertain, but they are split by both crystal field effects, 
and by the large spin-orbit coupling not yet included in our calculations. However, 
the latter interaction is treated implicitly in the DVM Xa calculations [6b] based 
on the Dirac equation. Therefore, the Xo~ result for the ionization potentials 
show better agreement with the experiment in this aspect, but it is quite remarkable 
that the present INDO approach is able to reproduce the experimental trend in 
the first IP of the series, CeX3, X = F, C1, Br with a maximum value for the 
chloride, a feature noticeably missing in the DVM Xa results [6b]. 

The initial success of the INDO model as implemented here lead us to calculate 
both geometries and IPs for the remaining lanthanide trichlorides. These results 
are shown in Table 6. The experimental geometries [6b, 49, 50] are very well 
reproduced by the INDO calculations. The INDO IPs reproduce the characteristic 
"W" pattern of the lanthanide atoms, and fall within the experimental ranges. 

To test the applicability of our model to lanthanide atoms not formally charged 
+3, we calculated the geometries and IPs for SmC12, EuC12 and YbCI2 molecules. 
The results are giw~n in Table 7. The INDO model gives optimized geometries 
that are bent and in good agreement with experimental results [52]. We note that 
this bending is a result of a small amount of p-orbital hybridization. It is not 
necessary to invoke London type forces, and thus correlation, to explain this effect. 

Tab le  6. G e o m e t r i e s  an t i  I o n i z a t i o n  Po ten t i a l s  ( IPs)  fo r  the  l a n t h a n i d e  t r i ch lor ides .  B o n d  

d i s t ances  a re  r e p o r t e d  in a n g s t r o m s ,  b o n d  ang les  in deg rees  a n d  IPs in eV. E x p e r i m e n t a l  a 

resul ts  a re  a l so  g iven  w h e r e  ava i l ab l e  

B o n d  d i s t a n c e  B o n d  ang le  I o n i z a t i o n  po t en t i a l  

A t o m  I N D O  Exp .  I N D O  Exp .  I N D O  Exp.  

Ce  2 .570 2.569 115.6 111.6 10.0 9.8 

Pr  2.566 2.553 108.5 110.8 11.8 ( 1 0 . 9 - 1 1 . 2 )  

N d  2.563 2.545 112.7 - -  13.3 12.0 

P m  2.556 ---  112.7 - -  14.4 - -  

S m  2.544 ---  113.0 - -  15.3 (13.7 - 17.0) 

E u  2 .532 ---  113.2 - -  16.4 - -  

G d  2 .514 2.489 110.0 113.0 17.7 ( 1 5 . 5 - 1 6 . 5 )  

Tb  2.496 2.478 109.8 109.9 13.0 ( 1 3 . 0 - 2 0 , 5 )  

D y  2.479 - -  110.1 - -  14,3 ( 1 4 . 0 - 2 0 . 0 )  

H o  2.464 2.459 112.0 111.2 15.0 ( 1 5 . 5 - 2 0 , 0 )  

E r  2.448 - -  110.9 - -  15.6 ( 1 1 . 5 - 1 6 . 0 )  

T m  2.430 - -  108.5 - -  15.9 (15.3 - 2 1 . 0 )  

Yb 2.421 - -  109.6 - -  15.9 ( 1 5 . 5 - 2 1 . 0 )  

Lu  2.415 2.417 108.2 111.5 18.6 ( 1 7 . 4 -  18.7) 

a [6b,  49] a n d  [51] 
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Table 7. Geometry and ionization potential for SmCI2, EuC12, and YbCI 2. Bond distances 
are given in angstroms, bond  angles in degrees, and ionization potentials in eV. Experimental 
results a are listed where available 

Bond distance Bond angle Ionization potential 
Molecule INDO Exp. INDO Exp. INDO Exp. 

SmCI 2 2.584 - -  143.3 130 i 15 5.3 
EuCI/  2.576 - -  143.2 135 • 15 6.6 
YbC12 2.400 - -  120.2 126• 3.2 

i 

Ref. 52 

We chose Ce(NO3)62 as our last example because it is one of the few known 
examples of a twelve coordinate metal. The optimized geometry is summarized 
in Tattle 8 and a plot of the optimized geometry is shown as Fig. 3. As one can 
see from Table 8 INDO predicts a geometry that is in excellent agreement with 
the experimental crystal structure [53]. Table 9 shows a population study of this 
complex. Although there is some f-orbital participation, it appears that this 
unusual twelve coordinate Th structure results from electrostatic forces between 
the ligands and the relatively large size of the Ce(IV) ion. 

5. Conclusions 

We develop an Intermediate Neglect of Differential Overlap (INDO) method 
that includes the lanthanide elements. This method uses a basis set scaled to 
reproduce Dirac-Fock numerical functions on the lanthanide mono-cations, and 
is characterized by the use of atomic ionization information for obtaining the 
one-center one-electron terms, and including all of the two-electron integrals. 
This latter refinement is required for accurate geometric predictions, some of 
which are represented here, and for accuracte spectroscopic predictions, to be 
reported latter. 

We have applied this method to complexes of the lanthanide elements with the 
halogens. The geometries calculated for these complexes are in good agreement 

Table 8. Average bond  distances and bond  angles for 
Ce(NO3)~ 2 ion INDO optimized geometry and the X- 
ray crystal structure a. Distances are in angstroms and 
angles in degrees. The c subscript on the oxygen atoms 
denotes that the oxygen is bonded to the cerium and 
the n subscript signifies a non-bonded  oxygen 

Geometric parameter  INDO Exp. 

r (Ce--Oc)  2.52 2.508 
r (N- -Oc)  1.27 1.282 
r ( N - - O . )  1.22 1.235 
0 ( O c - - N - - O c )  121.5 114.5 
0 (Oc- -Ce- -Oc)  50.9 50.9 

~ 
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CE(N03)6 

Fig. 3. Plot of  the twelve coordinate Ce(NO3)62 ion. Nitrogens 2, 18 and 22 are above the plane of 
the paper, while nitrogens 6, 10 and 14 lie below the plane of the paper  

Table 9. Population analysis of  Ce(NO3)62. The oxygen atoms that 
are coordinated to the cerium are indicated by Oc. The Wyberg bond 
index is also given. A Wyberg index of 1.00 is characteristic of  a single 
bond  

Atomic 
Atom Orbital populat ion Total valency 

s 0.23 - -  
p 0.33 - -  

Ce d 1.67 - -  
f 0.46 - -  
Net 1.31 6.37 

N Net 0.59 3.82 
Oc Net -0 .38 1.85 
O ,  Net -0 .39 1.68 

Bond Wyberg bond  index 

Ce- -Oc  0.50 
N- -Oc  1.18 
N- -O~  1.46 
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with exper iment ,  when  expe r imen ta l  va lues  are  avai lable .  The t r iha l ides  are 
ca lcu la ted  to be  p y r a m i d a l  in agreement  wi th  observat ion .  The  po ten t i a l  for  the  
umbre l l a  m o d e ,  however ,  is very flat. The d ich lo r ides  o f  Sm, Eu and  Yb are all  
p r ed i c t ed  to be  ben t  even at the  S C F  level,  aga in  in agreement  wi th  exper iment .  
This bend ing  is caused  by  a smal l  covalent  mix ing  o f  unge rade  6p and  4 f  orbi ta ls ,  
and  one need  not  invoke  L o n d o n  forces to exp la in  this observa t ion .  Aga in  the 
po ten t i a l  for  b e n d i n g  is very fiat. 

Wi th in  this m o d e l , f - o r b i t a l s  pa r t i c ipa t ion  in the  b o n d i n g  o f  these ionic  c o m p o u n d  
th rough  cova len t  effects is small .  Never the less  f -o rb i t a l s  pa r t i c ipa t ion  does  con- 
t r ibute  to the  p y r a m i d a l  geomet ry  o f  the t r iha l ides  and  the ben t  s t ructure  of  the  
d iha l ides .  In  add i t ion ,  a l t hough  the t r end  o f  b o n d  lengths  wi th in  the  series LnF3,  

LnC13, LnBr3, and  LuI3,  and  CeF3 and  CeF4 are r e p r o d u c e d  wi thou t  f - o r b i t a l  
pa r t i c ipa t ion ,  the  range  o f  values  ca lcu la ted  is cons ide rab ly  i m p r o v e d  when  

f -o rb i t a l s  are a l lowed  to par t i c ipa te .  Fo r  the  twelve coord ina t e  Ce(NO3)62 com- 
p lex  r epo r t ed  here,  f - o r b i t a l  pa r t i c ipa t ion  appea r s  minor .  A s table  complex  of  
nea r  Th symmet ry  is o b t a i n e d  regardless  o f  the  f - o r b i t a l  in te rac t ion  [54]. 
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